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The steady-state solution of the non-linear equation 

h,+hh,+h,,, = Sh,, 

with both damping and dispersion is examined in the phase plane. For small 
damping an averaging technique is used to obtain an oscillatory asymptotic 
solution. This solution becomes invalid as the period of the oscillation approaches 
infinity, and is matched to a straightforward expansion solution. The results 
obtained are compared with a numerical integration of the equation. 

1. Introduction 
During a study of the propagation of waves on liquid-filled elastic tubes 

(Johnson 1969)) it was found that a particular limit of the problem led to a 
Korteweg & de Vries (1895) equation with damping: 

ht+hh,+h,,, = Sh,,, 

where h(z, t )  is proportional to the radial perturbation of the tube wall, and z and t 
are the characteristic and time variables respectively. The equation (1) was valid 
in the far-field of an initially linear (small amplitude) near-field solution. This 
equation is the simplest form of wave equation in which non-linearity (hhz), 
dispersion (h,,,) and damping (Sh,,) all occur. 
Examination of the steady-state form of (1) (especially in the phase plane) 
showed that the radial profile h(x - Cot) was very similar to the observed surface 
profiles of bores. Indeed, as the damping parameter (8) is varied, the solution is 
altered from a monotonic profile to an oscillatory one headed by a near-solitary 
wave. For the bore, Benjamin & Lighthill (1954) showed that if only some of the 
classical energy loss occurred a t  the bore, then the excess could be carried away by 
a stationary wave train. In  fact they showed that the waves could be of the 
well-known ‘cnoidal’ form. Chester (1966) also indicated that in some sense a 
perturbation of Poiseuille flow led to monotonic and oscillatory surface profiles. 

The steady-state version of ( 1 )  has been suggested by Grad & Hu (1967) to 
describe the weak shock profile in plasmas, and they discuss the solution in the 
phase plane. 
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In  the present paper a phase-plane analysis similar to that of Grad & Hu is 
described and, for small damping (6 4 l), asymptotic solutions are obtained to 
the steady-state equation by a method due to Kuzmak (1959). 

2. Method of analysis 

travelling at  a uniform speed, so that 
The steady-state form of equation (1) is obtained by considering waves 

Also assuming that the upstream and downstream conditions remain undisturbed 

v + O ,  T-+co; ~ + l ,  T + - a  

and hence 
d2 v dv 2 4  
--+4v(v- 1) = e- e = 26(&) . 
d T 2  dT ' (3) 

It is in the form (3) that we shall be studying the equation. 
It is well known that a linear oscillator with a small non-linear term can be 

studied by the method of averages (e.g. Bogoliubov & Mitropolsky 1961). An 
asymptotic solution as an expansion in B is obtained by ensuring that successive 
terms are periodic. 

For no damping (e  = 0 ) ,  (3) is a non-linear equation with solutions which 
perform periodic oscillations-the so-called cnoidal waves of water wave theory. 
For small damping (e 4 l), similar application of averaging and periodicity 
conditions are possible as explained by Kuzmak (1959), but the analysis is con- 
siderably more complicated (usually resulting in the integration of Jacobian 
elliptic functions). The solutions of the damped equation extend over a large 
period range from the single solitary wave (infinite period) to the zero amplitude 
zero period cnoidal wave. Since averaging techniques rely on averaging over 
a large number of wavelengths such methods break down as the solitary wave 
is approached. It is then necessary to match this solution to a straightforward 
perturbation of the solitary wave. 

3. Phase-plane analysis 

that 
Equation (3) can be studied in the phase plane by introducing w = dv/dT so 

(4) 
dw ~ w - ~ v ( u -  1) 
dv W 
_ -  - 

In the plane (w, w), there are two singular points, 

w = 0, v = 0, a saddle point; 

a stable node, e 2 4, 

a stable spiral point, e < 4. 
w = o ,  v = l ,  
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A sketch of the integral curves for (4) with 4 > E 0 is given in figure 1. The 
special case 6 = 0 is the solitary wave, and clearly any other permitted value of E 

causes the integral curve to spiral towards v = 1. In the physical plane (w, T) this 
corresponds to a profile which starts as a solitary wave and slowly deviates from 
it, eventually oscillating about v = 1 (with ever decreasing period and amplitude). 

FIGURE 1. Phase plane (w = dw/dT, w) with 4 > e 0. 

For large E ,  we write EW = w1 and (4) becomes 

1 dw, 

€2 dv W1 

w, - 4v(v - 1) -~ - - 

Consequently the integral curves now become as shown in figure 2. The special 
case shown of 6 = 00 is the Taylor shock profile. As 8 decreases from infinity, the 
integral curve deviates from the Taylor profile but still remains monotonic. 
When e < 4, the curve spirals to v = 1 as before. Physically the solution for 
v( T) remains a monotonically increasing function from upstream to downstream 
conditions until 6 < 4, when the oscillatory motion about v = 1 occurs. 

As mentioned earlier, these results were obtained by Grad & Hu (1967). A 
numerical integration of (3) confirms this phase-plane analysis, the results of 
which are shown in figure 3. 

The figure shows on the same axes the two basically different types of solution 
4-2 
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which have been indicated. On the graph are a near-Taylor shock profile 
(e = 4-62); a profile which is just oscillatory (8 = 3.28) (i.e. the curve just exceeds 
unity and further oscillations are too small to be plotted) ; a much larger amplitude 
oscillation (e = 0.1); and finally, for comparison, the solitary wave (e = 0). 
Clearly the nature of these solutions agrees with the phase-plane analysis. 

V 

/ 

FIGURE 2. Phase plane (wl = E(dv/dT) ,  w) with E 2 4 and E < 4. 

1.5 
-\ 

4. Oscillatory asymptotic analysis 
Figure 1 shows that for small damping the solution starts very near to a 

solitary wave and steadily departs from it, causing the profile to  oscillate about 
v = 1. It is evident that the small damping causes the period of the oscillation to 
slowly change from infinite (the solitary wave) to zero (at v = 1). 

This suggests that a solution to  (3), for small damping, can be found by allowing 



A non-linear equation incorporating damping and dispersion 53 

damping, 

($)l 

\ 

the amplitude and period of the undamped solution to slowly vary. This idea 
together with the insistence on periodicity is the approach used by Kuzmak 
(1959), and indeed any method involving averaged periodic solutions. 

To utilize this method we must find the undamped solution to equation (3) 
(Lamb 1956). Thus considering the slightly more general equation without 

d2v/dT2+ ~ V ( V  - 1) = A ,  

I 

\ Curve C / 

FIGURE 4. Sketch of the cubic expression for the general (undamped) cnoidal wave. 

where A is a constant. Integrating once, 

#(dv/dT)2 = - v3 + #v’ + $Av + B 

= (v - vl)(v- v2)(v3 - v), 

where v1 < v2 < v3. The general form of this cubic expression is sketched in 
figure 4 (curve A ) .  

The only real solution of the equation occurs for (dv/dT)2 2 0, and thus the 
solution is either at  v = vl or a non-linear oscillation between v2 and v3 Two 
special cases of curve A are v2 -+ v1 (curve B )  giving the solitary wave, and 
v2 -+ v3 (curve C )  giving a discontinuity between v1 and v3 (the hydraulic jump). 

The solution can be written in terms of a Jacobian elliptic function cn (u; v) as 

w = v2+(v3-v2)cn2[T[+(v3-wl)]); v], ( 5 )  

where Y = (v3-v2)/(v3-vl). See Abramowitz & Stegun (1965). In  the case of 
A = B = 0, then v = 1 and the solution becomes v = $ sech2 T ,  the solitary wave. 
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Now introducing a slow time scale 

T = ET (6) 

( 7 )  

( 8 )  

a two parameter (T ,  r )  expansion is sought, 

w = v,(T, T ) + w ~ ( T ,  T ) +  .... 

wo = a(r)  + b(r)  en2 [T .a(r); v(r)],  

The form of ( 5 )  indicates that 

where a(r) = (2b/3v)t ,  so that ( 8 )  describes the slowly-varying nature of the 
solution. Using (6) we have 

which together with (7)  is substituted into ( 3 )  giving 

a 2  
O(1) :  ~ +~v,(w,- 1 )  = 0, 

aT2 

a2vl avo a2vo 
aT2 aT arar 

O ( S ) :  - + 4 ~ ~ ( 2 ~ ~ - 1 )  = - - 2 - .  

Putting (8) into (9) and using 

gives 
- dn2 + 1 - v  = --Yen2 = v(sn2-1) 

( 4b2/3v) [ 1 - v + 2( 2v - 1)  cn2 - 3v en4] + 4(a + b cn2)2 - 4(a + b cn2) = 0, 

and equating the coefficients of en2, on4, 

( 1 1 )  a = I - ' b  z( / v ) ( ~ u -  l) ,  b = $ v ( v ~ - - v +  I ) -&.  

The third equation is identically satisfied due to the choice of a(r). 
We now need one more relation to enable a, b and v to be defined. This is 

obtained from the condition that v,(T, r )  be periodic in T .  To simplify (lo), we put 

01 = VO, .f (T,  7 )  

1 T  

VOT 0 

giving fT = 2 Ib (':,- 20,vo,T) aT, 

where b, is arbitrary. Now v1 is periodic if fT is, thus 

where T p  is the period off. 

Hence 

where C, is constant. Equation (14)  can be rewritten, by averaging over a period, 
as 
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( K ( v )  defined below). Using the definition of the Jacobian elliptic functions, 
L(v) becomes 

h ( v )  = cos2 $ sin2 $( 1 - v sin2 $)4 d$. (16) so: 
With the well-known relations 

and F(Q,  $ , 1 ;  v) = $rK(v)}  the complete elliptic integrals of 

~ ( g ,  - Q, 1; V) = g r ~ ( v )  the 1st and 2nd kind respectively 

relation (16) can be written as 

v'L( V )  K ( v2 - v + 1)E( V) - 8( 1 - ~ ) ( 2  - v)K( v ) ,  (17) 

which together with e7 cc v ~ ( v ~ - v +  l)-&L(v) 
becomes the third relation defining a(7), b(7) ,  ~(7). The constant of proportionality 
is to be found by putting v = 1 at T = To, so that 

(18) e7-70 = (vz--v+ 1)-%[(v2-v+ l ) E ( v ) - s ( l - ~ ) ( 2 - v ) K ( v ) ] ,  

where To is the apparent position where the damping is 'switched-on' for the 
oscillatory analysis. This can only be fixed by matching. 

The final solution given by (7), (12) and (13) is 

w = v, + e v O T j T  [ (v;, - 2v,, wOTJ dT dT + . . . , 
a, 1 (19) 

where a, is arbitrary. Kuzmak points out that a solution like (19) is only valid 
provided that Tp < a (see (14)) i.e. if w, is truly oscillatory. Consequently (19) 
becomes invalid as v 3 1, since w, becomes non-periodic (see ( 5 ) ) .  

5. Perturbation of the solitary wave 
Since (19) becomes invalid, it is necessary to obtain a non-oscillatory solution 

of (3) by performing a straightforward expansion in 6. In fact we shall see that 
this amounts to a perturbation of the solitary wave. 

For convenience (3) is integrated once, 

remembering that w = dv/dT = 0 at T = +a, so that the solution of (20) will be 
monotonic as T + +a. Clearly (15), and hence the solution (19), is valid as 
T + -a describing the oscillatory nature of the solution. A straightforward 

(21) 
expansion is w = V,(T)+€V,(T)+ ..., 

which gives 
2 dT 
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The solution to (22) is the solitary wave, 

where the peak is fixed at T = 0. Substituting this into ( 2 3 )  and integrating the 
equation gives 

V, = $sech2T, (24) 

V, = sech2 T(tanh T - 1)  +& tanh T( > tanh T - 6) 

tanh T 
10( 1 + tanh T) 

- ___- + $T tanh T sech2 T ( 2 5 )  

where the condition dVJdTI,=, = 0 ensures that the peak OCCUTS at  T = 0 to  
0(c2).  It is clear that the expansion (21) becomes invalid as 

tanhT + - 1, T + -a, 
since the expression ( 2 5 )  then approaches infinity.? 

6. Matching procedure 
The solution given by ( 7 )  becomes invalid as T + 00, since the period of the 

wave approaches infinity and thus the averaging assumption is invalidated. It 
is possible, however, to expand the oscillatory solution as v-+ 1 (i.e. becomes 
non-oscillatory), so that by suitable choice of a, and b, (in (19)) it agrees term by 
term with the perturbation of the solitary wave (( 24) and ( 2 5 ) ) .  This is therefore 
a matching procedure for these two very dissimilar expansions. The method 
outlined here does not follow the usual technique of matched asymptotic expan- 
sions (Van Dyke 1964), where the breakdown of one expansion leads to a new 
scaling of the equation and consequently a new asymptotic expansion. Matching 
of two such expansions then follows directly. 

Thus we expand the oscillatory solution (8) and (9) for v + 1, T -+ To and in 
particular consider the region where 

T-To = O ( I ) ,  v = l-S(e).vi, S(S) < 1, v1 > 0; 

then (18) gives T N To-$.$v;, S21nS = - 6 ,  

so that T < To for v < 1 .  
Now 

Thus 

where 

' O F  = - 2ab en (aT) sn (aT) dn (aT) N - 3 sech2 T tanh T .  

(w& - 2wOTw,,,) dT - 9[B + 4 tanh3 T - + tanh5 TI, wOT, = O(S), 

B = & tanh5 b, - 3 tan113 b,. 

1 tanhT & [Ib: (v& - 2w,, woT7) dT dT N B YT - ~ + ___ ] [ tanhT sech2T 
Also 

1 tanh T 
8 sech4 T 

1 tanh3 T 
8 sech4 T 

+------ +- -1 +& cosh4T -&sinh4T + A ,  

1 tanha, 1 tanha, 1 tanh3a0 
tanh a, sech2 a, 8 sech4a, 8 sech4 a, 

where A = - B +- +-- +- -1 
t Note that the expansion also becomes invalid as T + + co, but it is elementary to 

show that the solution here can be matched directly to the asymptotic exponential be- 
haviour of the solitary wave. 
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Filially 

Thus the expression (19) as v -+ 1 can be written as 

vo = # sech2T + O(P) .  

v N $sech2T +e 3 B  + ( -&, - 3 A )  tanh T - y B  tanh2T 

1 1 tanh T 3 B  tanh2 T + ( -& + 3 A )  tanh3T - -___- - .- - y B T  tanhT sech2 T . 
10 sech2T 4 sech2 T ( 3 3 )  

Expression ( 3 3 )  matches exactly with (24) and (25) if 

(34) A = - L  B = - ? - .  
1 2 ’  1 5  

Consequently from (29)’ b, = + 03, and the one finite real solution of (31) gives 
a, = - 0.529 by a numerical computation. 

A sketch of the regions of validity of the asymptotic expansions is given in 
figure 5.  

I + l o  I T -  
a, 

FIGURE 5. A sketch showing the two asymptotic expansions, and the solitary wave. Note 
that both expansions cut the solitary wave at T = a, (to O(S2)). 

The matching of the expressions ( 3 3 )  and (24), (25) did not entail finding v1 
(i.e. To). Since (32 )  was correct to O(P) ,  and vI did not appear, then to the approxi- 
mation used in this paper it is impossible to define To (the apparent point where 
viscosity is ‘switched-on ’ for the oscillatory analysis). The only statement that 
can be made is 

T-To = O(1) ( v +  1)  

and since the expression (24)) (25) is only valid for T < O ( l ) ,  To = O(1). 
This result is not really unexpected. For the limit of small damping, the rate of 

dissipation of energy through the first wave is also small, and consequently the 
exact position of To becomes irrelevant to O(E) .  Thus to O( l ) ,  e - T o  = 1. It is now 
possible to compute u ( T ) ,  b ( ~ ) ,  and v(T), and in figure 6 the computed curves of 
a,  a + b and v are given as functions of e’. From (6) it is clear that (a  + b )  and a are 
the upper and lower envelopes respectively. 
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0 
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L 

FIGURE 6. Computed curves for upper and lower envelopes and ~ ( 7 ) .  Peak envelopes ob- 
tained by numerical integration for: + , e = 0.1 ; 0 ,  E = 0.01; x , e = 0.001 plotted for 
comparison. -, theory. 

FIGURE 7.  Results of the numerical integration of (3) for e = 0.1, as a function of T .  
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Also plotted on figure 6 are some peaks obtained by numerical integration of 
equation (3) using a predictor-corrector technique (for E = 01, 0.01 and 0.001). 
It is seen that the agreement for the two smaller values of E is excellent, and for 
E = 0.1, fair. These results thus show the validity of the theory for E -+ 0. The 
form of the oscillatory solution is shown in figure 7, where the numerical results 
for E = 0.1 are plotted against 7. 

7. The monotonic profile 
To complete the analyses, we will perturb the monotonic profile. It was seen in 

$ 3  that equation (3) can represent the Taylor shock profile as E +a. Rescaling 

T = E Y  (3) by using 

then 

It is clear that as E -+ co, the equation becomes the usual form for a Taylor shock 
between the two levels w = 0 and w = 1. 

A straightforward asymptotic expansion 

1 
w = %(F) + $qY) + .. ., 

gives O(1): 4V0(V0- 1) = d ~ / W  
O( l/e2): d z V o / W 2  + 4V1(V02 - 1) = d V l / d F .  

Thus it is easy to show that 

Vo = 8[1+ tanh ( -  2971 

and 

Fixing the midpoint of the profile a t  Y = 0 gives A = 0, and thus the near- 
Taylor shock profile becomes 

= sech2 ( - 2 F )  [ A  - In (sech2 (1 - 2Y))I. 

= &[l+ tanh(-2Y)J-(1/e2)sech3( -2F)ln[sech2(l-2Y)]+ .... 

8. Discussion 
The slowly-varying (oscillatory) analysis has been successfully matched to a 

straightforward asymptotic expansion in E .  The method used (by approximating 
to O(S2)) leaves us with an arbitrariness in the oscillatory analysis-the point 
(To) where the damping effect appears to begin is not specified other than to 
O( 1). Including the next approximation (which would be exceedingly tedious) 
should enable this position to be defined. To obtain the envelope curves in the 
oscillatory region of the solution, e-70 has been approximated by unity and the 
results are given in figure 6. As already seen the numerical integration confirms 
the predicted envelope curves. 

This work has shown that the solution to (3) is (for small damping) a cnoidal 
wave with varying period passing through all the possible wave types and 
culminating in the solitary wave. Such a wave profile is exactly what has been 
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observed in the undular bore. The measurements of Sandover & Taylor (1962) 
in fact show that the leading wave is very close indeed to the solitary wave. Thus 
we can tentatively suggest (3) as a model equation describing the undular bore 
(and Grad & Hu (1967) suggested it for the weak shock in plasmas). But it is 
also observed that some bores do not have a stationary wave train behind them- 
the hydraulic jump-and as explained in the phase plane this occurs for E > 4, 
when the profile is monotonic. However, equation (3) has not been shown to 
describe the undular bore in any true asymptotic limit. 

The author would like to thank Dr N.C.Freeman for his help, advice and 
encouragement with this work, and the Science Research Council for providing 
a research grant. 
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